Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
Stem Cell Res ; 77: 103424, 2024 Apr 21.
Article En | MEDLINE | ID: mdl-38677032

Succinic Semialdehyde Dehydrogenase Deficiency (SSADHD) is an ultra-rare autosomal recessive neurometabolic disorder caused by ALDH5A1 mutations presenting with autism and epilepsy. Here, we report the generation and characterization of human induced pluripotent stem cells (hiPSCs) derived from fibroblasts of three unrelated SSADHD patients - one female and two males with the CRISPR-corrected isogenic controls. These individuals are clinically diagnosed and are being followed in a longitudinal clinical study.

2.
Heliyon ; 10(5): e26656, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38434323

Pathogenic variants in the GNAO1 gene, encoding the alpha subunit of an inhibitory heterotrimeric guanine nucleotide-binding protein (Go) highly expressed in the mammalian brain, have been linked to encephalopathy characterized by different combinations of neurological symptoms, including developmental delay, hypotonia, epilepsy and hyperkinetic movement disorder with life-threatening paroxysmal exacerbations. Currently, there are only symptomatic treatments, and little is known about the pathophysiology of GNAO1-related disorders. Here, we report the characterization of a new in vitro model system based on patient-derived induced pluripotent stem cells (hiPSCs) carrying the recurrent p.G203R amino acid substitution in Gαo, and a CRISPR-Cas9-genetically corrected isogenic control line. RNA-Seq analysis highlighted aberrant cell fate commitment in neuronal progenitor cells carrying the p.G203R pathogenic variant. Upon differentiation into cortical neurons, patients' cells showed reduced expression of early neural genes and increased expression of astrocyte markers, as well as premature and defective differentiation processes leading to aberrant formation of neuronal rosettes. Of note, comparable defects in gene expression and in the morphology of neural rosettes were observed in hiPSCs from an unrelated individual harboring the same GNAO1 variant. Functional characterization showed lower basal intracellular free calcium concentration ([Ca2+]i), reduced frequency of spontaneous activity, and a smaller response to several neurotransmitters in 40- and 50-days differentiated p.G203R neurons compared to control cells. These findings suggest that the GNAO1 pathogenic variant causes a neurodevelopmental phenotype characterized by aberrant differentiation of both neuronal and glial populations leading to a significant alteration of neuronal communication and signal transduction.

3.
Comput Struct Biotechnol J ; 23: 638-647, 2024 Dec.
Article En | MEDLINE | ID: mdl-38283851

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas nucleases and human induced pluripotent stem cell (iPSC) technology can reveal deep insight into the genetic and molecular bases of human biology and disease. Undesired editing outcomes, both on-target (at the edited locus) and off-target (at other genomic loci) hinder the application of CRISPR-Cas nucleases. We developed Off-flow, a Nextflow-coded bioinformatic workflow that takes a specific guide sequence and Cas protein input to call four separate off-target prediction programs (CHOPCHOP, Cas-Offinder, CRISPRitz, CRISPR-Offinder) to output a comprehensive list of predicted off-target sites. We applied it to whole genome sequencing (WGS) data to investigate the occurrence of unintended effects in human iPSCs that underwent repair or insertion of disease-related variants by homology-directed repair. Off-flow identified a 3-base-pair-substitution and a mono-allelic genomic deletion at the target loci, KCNQ2, in 2 clones. Unbiased WGS analysis further identified off-target missense variants and a mono-allelic genomic deletion at the targeted locus, GNAQ, in 10 clones. On-target substitution and deletions had escaped standard PCR and Sanger sequencing analysis, while missense variants at other genomic loci were not detected by Off-flow. We used these results to filter out iPSC clones for subsequent functional experiments. Off-flow, which we make publicly available, works for human and mouse genomes currently and can be adapted for other genomes. Off-flow and WGS analysis can improve the integrity of studies using CRISPR/Cas-edited cells and animal models.

4.
Nat Commun ; 15(1): 584, 2024 Jan 17.
Article En | MEDLINE | ID: mdl-38233389

Unbiased phenotypic screens in patient-relevant disease models offer the potential to detect therapeutic targets for rare diseases. In this study, we developed a high-throughput screening assay to identify molecules that correct aberrant protein trafficking in adapter protein complex 4 (AP-4) deficiency, a rare but prototypical form of childhood-onset hereditary spastic paraplegia characterized by mislocalization of the autophagy protein ATG9A. Using high-content microscopy and an automated image analysis pipeline, we screened a diversity library of 28,864 small molecules and identified a lead compound, BCH-HSP-C01, that restored ATG9A pathology in multiple disease models, including patient-derived fibroblasts and induced pluripotent stem cell-derived neurons. We used multiparametric orthogonal strategies and integrated transcriptomic and proteomic approaches to delineate potential mechanisms of action of BCH-HSP-C01. Our results define molecular regulators of intracellular ATG9A trafficking and characterize a lead compound for the treatment of AP-4 deficiency, providing important proof-of-concept data for future studies.


Spastic Paraplegia, Hereditary , Humans , Spastic Paraplegia, Hereditary/drug therapy , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/metabolism , Proteomics , Neurons/metabolism , Protein Transport , Proteins/metabolism , Mutation
5.
Neurobiol Dis ; 190: 106386, 2024 Jan.
Article En | MEDLINE | ID: mdl-38110041

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a neurometabolic disorder caused by ALDH5A1 mutations presenting with autism and epilepsy. SSADHD leads to impaired GABA metabolism and results in accumulation of GABA and γ-hydroxybutyrate (GHB), which alter neurotransmission and are thought to lead to neurobehavioral symptoms. However, why increased inhibitory neurotransmitters lead to seizures remains unclear. We used induced pluripotent stem cells from SSADHD patients (one female and two male) and differentiated them into GABAergic and glutamatergic neurons. SSADHD iGABA neurons show altered GABA metabolism and concomitant changes in expression of genes associated with inhibitory neurotransmission. In contrast, glutamatergic neurons display increased spontaneous activity and upregulation of mitochondrial genes. CRISPR correction of the pathogenic variants or SSADHD mRNA expression rescue various metabolic and functional abnormalities in human neurons. Our findings uncover a previously unknown role for SSADHD in excitatory human neurons and provide unique insights into the cellular and molecular basis of SSADHD and potential therapeutic interventions.


Amino Acid Metabolism, Inborn Errors , Induced Pluripotent Stem Cells , Humans , Male , Female , Induced Pluripotent Stem Cells/metabolism , Amino Acid Metabolism, Inborn Errors/drug therapy , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/metabolism , Neurons/metabolism , gamma-Aminobutyric Acid/metabolism , Succinate-Semialdehyde Dehydrogenase/genetics
6.
Curr Protoc ; 3(1): e641, 2023 Jan.
Article En | MEDLINE | ID: mdl-36633423

Disordered cellular development, abnormal neuroanatomical formations, and dysfunction of neuronal circuitry are among the pathological manifestations of cortical regions in the brain that are often implicated in complex neurodevelopmental disorders. With the advancement of stem cell methodologies such as cerebral organoid generation, it is possible to study these processes in vitro using 3D cellular platforms that mirror key developmental stages occurring throughout embryonic neurogenesis. Patterning-based stem cell models of directed neuronal development offer one approach to accomplish this, but these protocols often require protracted periods of cell culture to generate diverse cell types and current methods are plagued by a lack of specificity, reproducibility, and temporal control over cell derivation. Although ectopic expression of transcription factors offers another avenue to rapidly generate neurons, this process of direct lineage conversion bypasses critical junctures of neurodevelopment during which disease-relevant manifestations may occur. Here, we present a directed differentiation approach for generating human pluripotent stem cell (hPSC)-derived cortical organoids with accelerated lineage specification to generate functionally mature cortical neurons in a shorter timeline than previously established protocols. This novel protocol provides precise guidance for the specification of neuronal cell type identity as well as temporal control over the pace at which cortical lineage trajectories are established. Furthermore, we present assays that can be used as tools to interrogate stage-specific developmental signaling mechanisms. By recapitulating major components of embryonic neurogenesis, this protocol allows for improved in vitro modeling of cortical development while providing a platform that can be utilized to uncover disease-specific mechanisms of disordered development at various stages across the differentiation timeline. © 2023 Wiley Periodicals LLC. Basic Protocol 1: 3D hPSC neural induction Support Protocol 1: Neural rosette formation assay Support Protocol 2: Neurosphere generation Support Protocol 3: Enzymatic dissociation, NSC expansion, and cryopreservation Basic Protocol 2: 3D neural progenitor expansion Basic Protocol 3: 3D accelerated cortical lineage patterning and terminal differentiation.


Pluripotent Stem Cells , Humans , Reproducibility of Results , Cell Differentiation , Pluripotent Stem Cells/metabolism , Neurons , Organoids/metabolism
7.
Front Psychiatry ; 13: 924956, 2022.
Article En | MEDLINE | ID: mdl-36405918

16p13.11 copy number variants (CNVs) have been associated with autism, schizophrenia, psychosis, intellectual disability, and epilepsy. The majority of 16p13.11 deletions or duplications occur within three well-defined intervals, and despite growing knowledge of the functions of individual genes within these intervals, the molecular mechanisms that underlie commonly observed clinical phenotypes remain largely unknown. Patient-derived, induced pluripotent stem cells (iPSCs) provide a platform for investigating the morphological, electrophysiological, and gene-expression changes that result from 16p13.11 CNVs in human-derived neurons. Patient derived iPSCs with varying sizes of 16p13.11 deletions and familial controls were differentiated into cortical neurons for phenotypic analysis. High-content imaging and morphological analysis of patient-derived neurons demonstrated an increase in neurite branching in patients compared with controls. Whole-transcriptome sequencing revealed expression level changes in neuron development and synaptic-related gene families, suggesting a defect in synapse formation. Subsequent quantification of synapse number demonstrated increased numbers of synapses on neurons derived from early-onset patients compared to controls. The identification of common phenotypes among neurons derived from patients with overlapping 16p13.11 deletions will further assist in ascertaining common pathways and targets that could be utilized for screening drug candidates. These studies can help to improve future treatment options and clinical outcomes for 16p13.11 deletion patients.

8.
Curr Protoc ; 2(10): e568, 2022 Oct.
Article En | MEDLINE | ID: mdl-36264199

Neuromesodermal progenitors represent a unique, bipotent population of progenitors residing in the tail bud of the developing embryo, which give rise to the caudal spinal cord cell types of neuroectodermal lineage as well as the adjacent paraxial somite cell types of mesodermal origin. With the advent of stem cell technologies, including induced pluripotent stem cells (iPSCs), the modeling of rare genetic disorders can be accomplished in vitro to interrogate cell-type specific pathological mechanisms in human patient conditions. Stem cell-derived models of neuromesodermal progenitors have been accomplished by several developmental biology groups; however, most employ a 2D monolayer format that does not fully reflect the complexity of cellular differentiation in the developing embryo. This article presents a dynamic 3D combinatorial method to generate robust populations of human pluripotent stem cell-derived neuromesodermal organoids with multi-cellular fates and regional identities. By utilizing a dynamic 3D suspension format for the differentiation process, the organoids differentiated by following this protocol display a hallmark of embryonic development that involves a morphological elongation known as axial extension. Furthermore, by employing a combinatorial screening assay, we dissect essential pathways for optimally directing the patterning of pluripotent stem cells into neuromesodermal organoids. This protocol highlights the influence of timing, duration, and concentration of WNT and fibroblast growth factor (FGF) signaling pathways on enhancing early neuromesodermal identity, and later, downstream cell fate specification through combined synergies of retinoid signaling and sonic hedgehog activation. Finally, through robust inhibition of the Notch signaling pathway, this protocol accelerates the acquisition of terminal cell identities. This enhanced organoid model can serve as a powerful tool for studying normal developmental processes as well as investigating complex neurodevelopmental disorders, such as neural tube defects. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Robust generation of 3D hPSC-derived spheroid populations in dynamic motion settings Support Protocol 1: Pluronic F-127 reagent preparation and coating to generate low-attachment suspension culture dishes Basic Protocol 2: Enhanced specification of hPSCs into NMP organoids Support Protocol 2: Combinatorial pathway assay for NMP organoid protocol optimization Basic Protocol 3: Differentiation of NMP organoids along diverse cellular trajectories and accelerated terminal fate specification into neurons, neural crest, and sclerotome derivatives.


Organoids , Pluripotent Stem Cells , Humans , Pregnancy , Female , Hedgehog Proteins , Poloxamer , Fibroblast Growth Factors , Retinoids
9.
Mol Ther Methods Clin Dev ; 27: 32-46, 2022 Dec 08.
Article En | MEDLINE | ID: mdl-36156879

Interest in gene-based therapies for neurodevelopmental disorders is increasing exponentially, driven by the rise in recognition of underlying genetic etiology, progress in genomic technology, and recent proof of concept in several disorders. The current prioritization of one genetic disorder over another for development of therapies is driven by competing interests of pharmaceutical companies, advocacy groups, and academic scientists. Although these are all valid perspectives, a consolidated framework will facilitate more efficient and rational gene therapy development. Here we outline features of Mendelian neurodevelopmental disorders that warrant consideration when determining suitability for gene therapy. These features fit into four broad domains: genetics, preclinical validation, clinical considerations, and ethics. We propose a simple mnemonic, GENE TARGET, to remember these features and illustrate how they could be scored using a preliminary scoring rubric. In this suggested rubric, for a given disorder, scores for each feature may be added up to a composite GENE TARGET suitability (GTS) score. In addition to proposing a systematic method to evaluate and compare disorders, our framework helps identify gaps in the translational pipeline for a given disorder, which can inform prioritization of future research efforts.

10.
NPJ Genom Med ; 6(1): 91, 2021 Nov 04.
Article En | MEDLINE | ID: mdl-34737294

Autism Spectrum Disorder (ASD) is genetically complex with ~100 copy number variants and genes involved. To try to establish more definitive genotype and phenotype correlations in ASD, we searched genome sequence data, and the literature, for recurrent predicted damaging sequence-level variants affecting single genes. We identified 18 individuals from 16 unrelated families carrying a heterozygous guanine duplication (c.3679dup; p.Ala1227Glyfs*69) occurring within a string of 8 guanines (genomic location [hg38]g.50,721,512dup) affecting SHANK3, a prototypical ASD gene (0.08% of ASD-affected individuals carried the predicted p.Ala1227Glyfs*69 frameshift variant). Most probands carried de novo mutations, but five individuals in three families inherited it through somatic mosaicism. We scrutinized the phenotype of p.Ala1227Glyfs*69 carriers, and while everyone (17/17) formally tested for ASD carried a diagnosis, there was the variable expression of core ASD features both within and between families. Defining such recurrent mutational mechanisms underlying an ASD outcome is important for genetic counseling and early intervention.

11.
J Med Internet Res ; 23(3): e21023, 2021 03 16.
Article En | MEDLINE | ID: mdl-33724192

BACKGROUND: 16p13.11 microduplication syndrome has a variable presentation and is characterized primarily by neurodevelopmental and physical phenotypes resulting from copy number variation at chromosome 16p13.11. Given its variability, there may be features that have not yet been reported. The goal of this study was to use a patient "self-phenotyping" survey to collect data directly from patients to further characterize the phenotypes of 16p13.11 microduplication syndrome. OBJECTIVE: This study aimed to (1) discover self-identified phenotypes in 16p13.11 microduplication syndrome that have been underrepresented in the scientific literature and (2) demonstrate that self-phenotyping tools are valuable sources of data for the medical and scientific communities. METHODS: As part of a large study to compare and evaluate patient self-phenotyping surveys, an online survey tool, Phenotypr, was developed for patients with rare disorders to self-report phenotypes. Participants with 16p13.11 microduplication syndrome were recruited through the Boston Children's Hospital 16p13.11 Registry. Either the caregiver, parent, or legal guardian of an affected child or the affected person (if aged 18 years or above) completed the survey. Results were securely transferred to a Research Electronic Data Capture database and aggregated for analysis. RESULTS: A total of 19 participants enrolled in the study. Notably, among the 19 participants, aggression and anxiety were mentioned by 3 (16%) and 4 (21%) participants, respectively, which is an increase over the numbers in previously published literature. Additionally, among the 19 participants, 3 (16%) had asthma and 2 (11%) had other immunological disorders, both of which have not been previously described in the syndrome. CONCLUSIONS: Several phenotypes might be underrepresented in the previous 16p13.11 microduplication literature, and new possible phenotypes have been identified. Whenever possible, patients should continue to be referenced as a source of complete phenotyping data on their condition. Self-phenotyping may lead to a better understanding of the prevalence of phenotypes in genetic disorders and may identify previously unreported phenotypes.


DNA Copy Number Variations , Family , Biological Variation, Population , Cohort Studies , Humans , Phenotype
12.
Stem Cell Res ; 53: 102276, 2021 05.
Article En | MEDLINE | ID: mdl-33714067

CDKL5 Deficiency Disorder (CDD) is a rare X-linked monogenic developmental encephalopathy that is estimated to affect 1:42,000 live births. CDD is caused by pathogenic variants in the CDKL5 gene and is observed in both male and female patients. Here, we report the generation and characterization of induced pluripotent stem cells (iPSCs) derived from fibroblasts of six unrelated CDD patients-three males and three females. These patients are clinically diagnosed to present with classic CDD phenotypes, including refractory epilepsy and global developmental delay, and are being followed in a longitudinal clinical study.


Epileptic Syndromes , Induced Pluripotent Stem Cells , Spasms, Infantile , Female , Humans , Male , Protein Serine-Threonine Kinases/genetics , Spasms, Infantile/genetics
13.
Hum Mol Genet ; 29(2): 320-334, 2020 01 15.
Article En | MEDLINE | ID: mdl-31915823

Deficiency of the adaptor protein complex 4 (AP-4) leads to childhood-onset hereditary spastic paraplegia (AP-4-HSP): SPG47 (AP4B1), SPG50 (AP4M1), SPG51 (AP4E1) and SPG52 (AP4S1). This study aims to evaluate the impact of loss-of-function variants in AP-4 subunits on intracellular protein trafficking using patient-derived cells. We investigated 15 patient-derived fibroblast lines and generated six lines of induced pluripotent stem cell (iPSC)-derived neurons covering a wide range of AP-4 variants. All patient-derived fibroblasts showed reduced levels of the AP4E1 subunit, a surrogate for levels of the AP-4 complex. The autophagy protein ATG9A accumulated in the trans-Golgi network and was depleted from peripheral compartments. Western blot analysis demonstrated a 3-5-fold increase in ATG9A expression in patient lines. ATG9A was redistributed upon re-expression of AP4B1 arguing that mistrafficking of ATG9A is AP-4-dependent. Examining the downstream effects of ATG9A mislocalization, we found that autophagic flux was intact in patient-derived fibroblasts both under nutrient-rich conditions and when autophagy is stimulated. Mitochondrial metabolism and intracellular iron content remained unchanged. In iPSC-derived cortical neurons from patients with AP4B1-associated SPG47, AP-4 subunit levels were reduced while ATG9A accumulated in the trans-Golgi network. Levels of the autophagy marker LC3-II were reduced, suggesting a neuron-specific alteration in autophagosome turnover. Neurite outgrowth and branching were reduced in AP-4-HSP neurons pointing to a role of AP-4-mediated protein trafficking in neuronal development. Collectively, our results establish ATG9A mislocalization as a key marker of AP-4 deficiency in patient-derived cells, including the first human neuron model of AP-4-HSP, which will aid diagnostic and therapeutic studies.


Adaptor Protein Complex 4/genetics , Adaptor Protein Complex 4/metabolism , Autophagy-Related Proteins/metabolism , Membrane Proteins/metabolism , Protein Transport/genetics , Spastic Paraplegia, Hereditary/metabolism , Vesicular Transport Proteins/metabolism , trans-Golgi Network/metabolism , Adaptor Protein Complex 4/deficiency , Adaptor Protein Complex beta Subunits/metabolism , Adolescent , Autophagosomes/metabolism , Autophagy/genetics , Cell Line , Child , Child, Preschool , Female , Fibroblasts/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Iron/metabolism , Loss of Function Mutation , Male , Microtubule-Associated Proteins/metabolism , Mitochondria/metabolism , Neurogenesis/genetics , Neurons/metabolism , Spastic Paraplegia, Hereditary/genetics , trans-Golgi Network/genetics
14.
J Neurosci ; 39(47): 9294-9305, 2019 11 20.
Article En | MEDLINE | ID: mdl-31591157

Tuberous sclerosis complex (TSC) is a genetic disorder caused by mutations in TSC1 or TSC2 Patients frequently have epilepsy, autism spectrum disorder, and/or intellectual disability, as well as other systemic manifestations. In this study, we differentiated human induced pluripotent stem cells (iPSCs) from a female patient with TSC with one or two mutations in TSC2 into neurons using induced expression of NGN2 to examine neuronal dysregulation associated with the neurological symptoms in TSC. Using this method, neuronal differentiation was comparable between the three genotypes of iPSCs. We observed that TSC2+/- neurons show mTOR complex 1 (mTORC1) hyperactivation and associated increased cell body size and process outgrowth, as well as exacerbation of the abnormalities by loss of the second allele of TSC2 in TSC2-/- neurons. Interestingly, iPSC-derived neurons with either a single or biallelic mutation in TSC2 demonstrated hypersynchrony and downregulation of FMRP targets. However, only neurons with biallelic mutations of TSC2 demonstrated hyperactivity and transcriptional dysregulation observed in cortical tubers. These data demonstrate that loss of one allele of TSC2 is sufficient to cause some morphological and physiological changes in human neurons but that biallelic mutations in TSC2 are necessary to induce gene expression dysregulation present in cortical tubers. Finally, we found that treatment of iPSC-derived neurons with rapamycin reduced neuronal activity and partially reversed gene expression abnormalities, demonstrating that mTOR dysregulation contributes to both phenotypes. Therefore, biallelic mutations in TSC2 and associated molecular dysfunction, including mTOR hyperactivation, may play a role in the development of cortical tubers.SIGNIFICANCE STATEMENT In this study, we examined neurons derived from induced pluripotent stem cells with two, one, or no functional TSC2 (tuberous sclerosis complex 2) alleles and found that loss of one or both alleles of TSC2 results in mTORC1 hyperactivation and specific neuronal abnormalities. However, only biallelic mutations in TSC2 resulted in elevated neuronal activity and upregulation of cell adhesion genes that is also observed in cortical tubers. These data suggest that loss of heterozygosity of TSC1 or TSC2 may play an important role in the development of cortical tubers, and potentially epilepsy, in patients with TSC.


Alleles , Induced Pluripotent Stem Cells/physiology , Mutation/genetics , Neurons/physiology , Tuberous Sclerosis Complex 2 Protein/genetics , Tuberous Sclerosis/genetics , Cells, Cultured , Female , Humans , Induced Pluripotent Stem Cells/pathology , Male , Neurons/pathology , Tuberous Sclerosis/pathology
15.
Stem Cell Res ; 40: 101575, 2019 10.
Article En | MEDLINE | ID: mdl-31525725

Bi-allelic variants in the subunits of the adaptor protein complex 4 lead to childhood-onset, complex hereditary spastic paraplegia (AP-4-HSP): SPG47 (AP4B1), SPG50 (AP4M1), SPG51 (AP4E1), and SPG52 (AP4S1). Here, we describe the generation of induced pluripotent stem cells (iPSCs) from three AP-4-HSP patients with compound-heterozygous, loss-of-function variants in AP4B1 and sex-matched parents. Fibroblasts were reprogrammed using non-integrating Sendai virus. iPSCs were characterized according to standard protocols including karyotyping, embryoid body formation, pluripotency marker expression and STR profiling. These first iPSC lines for SPG47 provide a valuable resource for studying this rare disease and related forms of hereditary spastic paraplegia.


Adaptor Protein Complex 4/genetics , Cell Line/cytology , Induced Pluripotent Stem Cells/metabolism , Spastic Paraplegia, Hereditary/genetics , Adaptor Protein Complex 4/metabolism , Adult , Alleles , Cell Differentiation , Cell Line/metabolism , Cells, Cultured , Child, Preschool , Female , Humans , Induced Pluripotent Stem Cells/cytology , Male , Spastic Paraplegia, Hereditary/metabolism
16.
Nat Neurosci ; 18(1): 17-24, 2015 Jan.
Article En | MEDLINE | ID: mdl-25420066

Reprogramming somatic cells from one cell fate to another can generate specific neurons suitable for disease modeling. To maximize the utility of patient-derived neurons, they must model not only disease-relevant cell classes, but also the diversity of neuronal subtypes found in vivo and the pathophysiological changes that underlie specific clinical diseases. We identified five transcription factors that reprogram mouse and human fibroblasts into noxious stimulus-detecting (nociceptor) neurons. These recapitulated the expression of quintessential nociceptor-specific functional receptors and channels found in adult mouse nociceptor neurons, as well as native subtype diversity. Moreover, the derived nociceptor neurons exhibited TrpV1 sensitization to the inflammatory mediator prostaglandin E2 and the chemotherapeutic drug oxaliplatin, modeling the inherent mechanisms underlying inflammatory pain hypersensitivity and painful chemotherapy-induced neuropathy. Using fibroblasts from patients with familial dysautonomia (hereditary sensory and autonomic neuropathy type III), we found that the technique was able to reveal previously unknown aspects of human disease phenotypes in vitro.


Fibroblasts , Models, Neurological , Nociceptors , Pain/physiopathology , Sensory Receptor Cells , Animals , Dysautonomia, Familial/pathology , Electrophysiological Phenomena/physiology , Humans , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Peripheral Nervous System Diseases/pathology , Transcription Factors
17.
J Neurosci Res ; 91(5): 603-22, 2013 May.
Article En | MEDLINE | ID: mdl-23404451

Over a century ago, Ramon y Cajal first proposed the idea of a directionality involved in nerve conduction and neuronal communication. Decades later, it was discovered that myelin, produced by glial cells, insulated axons with periodic breaks where nodes of Ranvier (nodes) form to allow for saltatory conduction. In the peripheral nervous system (PNS), Schwann cells are the glia that can either individually myelinate the axon from one neuron or ensheath axons of many neurons. In the central nervous system (CNS), oligodendrocytes are the glia that myelinate axons from different neurons. Review of more recent studies revealed that this myelination created polarized domains adjacent to the nodes. However, the molecular mechanisms responsible for the organization of axonal domains are only now beginning to be elucidated. The molecular domains in myelinated axons include the axon initial segment (AIS), where various ion channels are clustered and action potentials are initiated; the node, where sodium channels are clustered and action potentials are propagated; the paranode, where myelin loops contact with the axolemma; the juxtaparanode (JXP), where delayed-rectifier potassium channels are clustered; and the internode, where myelin is compactly wrapped. Each domain contains a unique subset of proteins critical for the domain's function. However, the roles of these proteins in axonal domain organization are not fully understood. In this review, we highlight recent advances on the molecular nature and functions of some of the components of each axonal domain and their roles in axonal domain organization and maintenance for proper neuronal communication.


Axons/metabolism , Myelin Sheath/metabolism , Neuroglia/cytology , Neurons/cytology , Animals , Axonal Transport , Membrane Lipids/metabolism , Myelin Proteins/metabolism , Nervous System/cytology , Neuroglia/metabolism , Neurons/metabolism , Ranvier's Nodes/metabolism
18.
J Neurosci ; 32(14): 4724-42, 2012 Apr 04.
Article En | MEDLINE | ID: mdl-22492029

Basket axon collaterals synapse onto the Purkinje soma/axon initial segment (AIS) area to form specialized structures, the pinceau, which are critical for normal cerebellar function. Mechanistic details of how the pinceau become organized during cerebellar development are poorly understood. Loss of cytoskeletal adaptor protein Ankyrin G (AnkG) results in mislocalization of the cell adhesion molecule Neurofascin (Nfasc) at the Purkinje AIS and abnormal organization of the pinceau. Loss of Nfasc in adult Purkinje neurons leads to slow disorganization of the Purkinje AIS and pinceau morphology. Here, we used mouse conditional knock-out techniques to show that selective loss of Nfasc, specifically in Purkinje neurons during early development, prevented maturation of the AIS and resulted in loss of Purkinje neuron spontaneous activity and pinceau disorganization. Loss of Nfasc in both Purkinje and basket neurons caused abnormal basket axon collateral branching and targeting to Purkinje soma/AIS, leading to extensive pinceau disorganization, Purkinje neuron degeneration, and severe ataxia. Our studies reveal that the Purkinje Nfasc is required for AIS maturation and for maintaining stable contacts between basket axon terminals and the Purkinje AIS during pinceau organization, while the basket neuron Nfasc in combination with Purkinje Nfasc is required for proper basket axon collateral outgrowth and targeting to Purkinje soma/AIS. Thus, cerebellar pinceau organization requires coordinated mechanisms involving specific Nfasc functions in both Purkinje and basket neurons.


Cell Adhesion Molecules/physiology , Cerebellum/cytology , Nerve Growth Factors/physiology , Neurons/classification , Purkinje Cells/physiology , Animals , Animals, Newborn , Axons/physiology , Cell Adhesion Molecules/deficiency , Cell Adhesion Molecules/genetics , Cell Death , Cerebellum/growth & development , Female , Male , Mice , Mice, Transgenic , Nerve Growth Factors/deficiency , Nerve Growth Factors/genetics , Neurons/pathology , Neurons/physiology , Organ Culture Techniques
19.
J Neurosci ; 31(22): 8013-24, 2011 Jun 01.
Article En | MEDLINE | ID: mdl-21632923

Precise targeting and maintenance of axonal domains in myelinated axons is essential for saltatory conduction. Caspr and Caspr2, which localize at paranodal and juxtaparanodal domains, contain binding sites for the cytoskeletal adaptor protein 4.1B. The exact role of 4.1B in the organization and maintenance of axonal domains is still not clear. Here, we report the generation and characterization of 4.1B-null mice. We show that loss of 4.1B in the PNS results in mislocalization of Caspr at paranodes and destabilization of paranodal axoglial septate junctions (AGSJs) as early as postnatal day 30. In the CNS, Caspr localization is progressively disrupted and ultrastructural analysis showed paranodal regions that were completely devoid of AGSJs, with axolemma separated from the myelin loops, and loops coming off the axolemma. Most importantly, our phenotypic analysis of previously generated 4.1B mutants, used in the study by Horresh et al. (2010), showed that Caspr localization was not affected in the PNS, even after 1 year; and 4.1R was neither expressed, nor enriched at the paranodes. Furthermore, ultrastructural analysis of these 4.1B mutants showed destabilization of CNS AGSJs at ∼ 1 year. We also discovered that the 4.1B locus is differentially expressed in the PNS and CNS, and generates multiple splice isoforms in the PNS, suggesting 4.1B may function differently in the PNS versus CNS. Together, our studies provide direct evidence that 4.1B plays a pivotal role in interactions between the paranodal AGSJs and axonal cytoskeleton, and that 4.1B is critically required for long-term maintenance of axonal domains in myelinated axons.


Intercellular Junctions/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Nerve Fibers, Myelinated/metabolism , Plakins/genetics , Plakins/metabolism , Animals , Axons/metabolism , Axons/ultrastructure , Cell Adhesion Molecules, Neuronal/metabolism , Central Nervous System/metabolism , Central Nervous System/ultrastructure , Intercellular Junctions/ultrastructure , Mice , Mice, Knockout , Mice, Transgenic , Nerve Fibers, Myelinated/ultrastructure , Neural Conduction/genetics , Neural Conduction/physiology , Peripheral Nervous System/metabolism , Peripheral Nervous System/ultrastructure , Ranvier's Nodes/metabolism , Ranvier's Nodes/ultrastructure
20.
Mol Vis ; 16: 1854-63, 2010 Sep 12.
Article En | MEDLINE | ID: mdl-21031018

PURPOSE: The retina has the demanding task of encoding all aspects of the visual scene within the space of one fixation period lasting only a few hundred milliseconds. To accomplish this feat, information is encoded in specialized parallel channels and passed on to numerous central nuclei via the optic nerve. These parallel channels achieve specialization in at least three ways: the synaptic networks in which they participate, the neurotransmitter receptors expressed and the types and locations of ion channels or transporters used. Subcellular localization of receptors, channels and transporters is made yet more complex in the retina by the double duty many retinal processes serve. In the present work, we show that the protein Caspr (Contactin Associated Protein), best known for its critical role in the localization of voltage-gated ion channels at the nodes of Ranvier, is present in several types of retinal neurons including amacrine, bipolar, horizontal, and ganglion cells. METHODS: Using standard double label immunofluorescence protocols, we characterized the pattern of Caspr expression in the rodent retina. RESULTS: Caspr labeling was observed through much of the retina, including horizontal, bipolar, amacrine, and ganglion cells. Among amacrine cells, Caspr was observed in AII amacrine cells through co-localization with Parvalbumin and Disabled-1 in rat and mouse retinas, respectively. An additional amacrine cell type containing Calretinin also co-localized with Caspr, but did not co-localize with choline-acetyltransferase. Nearly all cells in the ganglion cell layer contain Caspr, including both displaced amacrine and ganglion cells. In the outer retina, Caspr was co-localized with PKC labeling in rod bipolar cell dendrites. In addition, Caspr labeling was found inside syntaxin-4 'sandwiches' in the outer plexiform layer, most likely indicating its presence in cone bipolar cell dendrites. Finally, Caspr was co-localized in segments of horizontal cell dendrites labeled with Calbindin-D28k. CONCLUSIONS: Caspr is best known for its role in organizing the localization of different voltage-gated ion channels in and around nodes of Ranvier. As neuronal processes in the retina often play a dual role involving both input and output, it is possible that the localization of Caspr in the retina will help us decipher the way retinal cells localize ion channels in their processes to increase computational capacity.


Cell Adhesion Molecules, Neuronal/metabolism , Mammals/metabolism , Retina/metabolism , Amacrine Cells/cytology , Amacrine Cells/metabolism , Animals , Biomarkers/metabolism , Mice , Protein Transport , Rats , Retina/cytology , Staining and Labeling
...